
545 

Acta Cryst. (1973). A29, 545 

Direct Determination of  X-ray Phases for Tobacco Mosaic  
Virus Protein using Non-crystallographic Symmetry 

BY ANTHONY JACK * 
M.R.C. Laboratory of  Molecular Biology, Hills Road, Cambridge, England 

(Received 11 December 1972; accepted 6 April 1973) 

The basic structural unit of tobacco mosaic virus (TMV) protein crystals is a ring of seventeen identical 
subunits. This non-crystallographic 17-fold symmetry has been used to determine signs of the X-ray 
refiexions in the centrosymmetric hkO projection, in two different but related ways. The results are 
compared with those obtained by Gilbert [Ph.D. Thesis (1970), Univ. of Cambridge] using the method 
of single isomorphous replacement (SIR), and are shown to agree well for reflexions with (h + k) even. 
Owing to the special positions of the bound heavy atoms, reliable signs have not hitherto been available 
for reflexions with (h+k) odd. Evidence is presented to show that those obtained from the non- 
crystallographic symmetry are essentially correct. 

Introduction 

Tobacco mosaic virus (TMV) is the most thoroughly 
studied of the helical viruses. A single virus particle, of 
length about 3000 A, and diameter 180 A_ consists of a 
central core of ribonucleic acid (RNA) surrounded by 
some 2130 identical helically arranged protein sub- 
units (Watson, 1954; Franklin & Holmes, 1958). It is 
possible to separate the protein subunits from the RNA 
core, and it is found that the protein reaggregates in 
several different ways, depending on pH, ionic strength 
etc. (Caspar, 1963; Klug & Durham, 1971). One of the 
stable aggregates near neutral pH is a 'disc', in which 
two rings of subunits are superimposed head to tail 
(Finch & Klug, 1971). 

Finch, Leberman, Yu-shang & Klug (1966) suc- 
ceeded in crystallizing the coat protein, and showed 
from electron micrographs that the crystals were based 
on the discs of subunits mentioned above. Low-angle 
screenless precession photographs clearly showed rings 
of 34 equally spaced regions of strong intensity, in- 
dicating that each ring of the disc contained 17 sub- 
units, and close examination of the micrographs 
showed the discs to have 17-fold symmetry. More re- 
cently, Crowther & Amos (1971) have used a harmonic 
analysis technique to show that the strongest harmonic 
component in the micrographs is that corresponding to 
17-fold rotation. This, together with the X-ray evidence, 
leaves no doubt that the disc has 17-fold symmetry. 

Further X-ray studies (Finch et al., 1966; Gilbert, 
1970) have shown the crystals to have space-group 
symmetry P22121 with lattice parameters a =  228.2 _+ .5, 
b=223.9 _+ .5, e= 174-3 + .5 A. The crystallographic a- 
symmetric unit consists of a disc of two superimposed 
rings (arranged in a polar manner but with different 
azimuthal orientations) whose local 17-fold axis is nearly 
parallel to the crystallographic z axis. 

* Present address: Gibb3 Laboratory, Harvard University, 
12 Oxford St., Cambridge, Mass. 02138, U.S.A. 

Fig. 1 shows the crystal packing arrangement, from 
which it can be seen that in the z-axis projection the 
discs stack in pairs, and also that there is some overlap 
between neighbouring stacks. Gilbert (1970) has made 
an extensive study of these crystals. He has used the 
method of single isomorphous replacement (SIR), with 
a methylmercury derivative, to obtain signs for the X- 
ray reflexions corresponding to the three centrosym- 
metric projections of the protein. During least-squares 
refinement of the mercury-atom coordinates deduced 
from difference Patterson projections, it became clear 
that the local 17-fold axes were tilted some 1½ ° off z 
towards the y axis, and also that the stacks were not 
centred exactly at 0,0,0 and ±2,2,1, ± ~- but that each disc 
of the stack had a small displacement in the y direction. 
These small deviations from the ideal arrangement 
have been ignored in the work described below. 

All the X-ray intensities used in this work were meas- 
ured by Dr P. F. C. Gilbert (Gilbert, 1970) using 7½ ° 
precession photographs and a computer-controlled 
flying-spot densitometer. Amplitudes measured in this 
way are generally accurate to within less than 5 %, and 
although the effect of amplitude errors has not been 
studied for this particular case, model calculations have 
shown that this level of error is quite acceptable, and 
has little effect on the solution of the phase equations. 

Exploitation of the non-crystallographic symmetry 

Rossmann & Blow (1963, 1964) were the first to show 
that if the rotation and translation parameters relating 
crystallographically independent subunits are known, 
then it is possible to determine a set of X-ray phases 
subject to the constraint that the electron-density dis- 
tributions in these subunits be identical. These ideas 
have been generalized and further extended by Main & 
Rossmann (1966), Main (1967) and Crowther (1967, 
1969), who showed that the phase relationships could 
conveniently be written in matrix notation as 

H F = F  (1) 
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wbere F is a column vector of complex structure fac- 
tors, and H is a Hermitian matrix whose elements de- 
pend only on the shape and size of the subunits and the 
rotations and translations relating them. 

Crowther's derivation assumes that it is possible to 
define an 'envelope' which contains all the significant 
electron density in one subunit, and none from its 
neighbours. If, however, the non-crystallographic sym- 
metry is pure rotational, a simpler expression for the 
matrix element can be derived (Crowtber, 1968) by de- 
fining an envelope U which contains all the significant 
density in the asymmetric unit. Such an envelope must, 
of course, have point-group symmetry at least as high 
as that of the subunit aggregate. An argument similar 
to that given by Main & Rossmann (1966), and by 
Crowther (1967), leads to a set of equations of the form 

1 ,,° fg  F,= n ~ Fp ~ xp 2z~i(h. x j - p .  xl)dx, 
J= l j  

(2) 

where n is the number of subunits and 

Xj : C j x  I -[- d j ,  (3) 
Cj and dj being appropriate rotation matrices and 
translation vectors defining the non-crystallographic 
symmetry. 

The integral (Patterson, 1939; Rossmann & Blow, 
1962) may be written as 

U_ G(2rcRja) exp {2rci(h-p) S} 
V 

where V is the cell volume, G is the amplitude of the 
Fourier transform of the envelope volume U, Rj is the 
reciprocal distance ]h. C j - p l ,  S is a vector from the 
origin to the molecular centre, and a is the radius of the 
envelope. Thus finally we have 

u 
Fh= n-l/ ~ Fp exp {2zci(h-p). S} G(2zcRja). (4) 

p j = l  

Crowther (1969) has suggested an elegant method of 
solution of equation (1), based on the fact that the 
eigenvalues of H all lie between 0 and 1. Since any 
eigenvector of H corresponding to unit eigenvalue must 
be a solution, the vector of structure factors F can be 
considered as a combination of 'allowed' components, 
corresponding to these eigenvectors, together with 
'non-allowed' components, these being the eigenvectors 
correspondingto the non-unit eigenvalues. Thus as a first 
approximation all the phases can be set to zero (in the 
absence of any better estimate), and the resulting vector 
F multiplied by H. This leaves unchanged the compo- 
nents of F corresponding to unit eigenvalues, and tends 
to remove components corresponding to the smaller 
eigenvalues. The phases of the new F vector are then 
combined with the observed amplitudes, and the pro- 
cess repeated until the mean phase change per cycle 
drops below some specified minimum. 

Setting up the equations for TMV protein 

The z-axis projection of TMV protein has plane-group 
symmetry pgm, with two discs per cell centred at 1,¼ 
and ¼,¼. (Note that the origin has been shifted by 
- ¼ , -  ¼ from that shown in Fig. 1 in order to make a 
centre of symmetry coincide with the crystallographic 
origin.) Thus the integral on the right of equation (2) 
must be taken over two discs, and is real because of the 
centrosymmetry of the projection. The function G is in 
this case the Fourier transform of a disc, given by 

G (2 lr Rja) = .11 (2~z Rja)/~r Rja 

(see, e.g. James 1948, p. 399), where J1 is a first-order 
Bessel function, and a the disc radius (Fig. 2). Since the 
crystallographic symmetry introduces no further non- 
crystallographic symmetry operators in reciprocal 
space, equation (4) becomes 

2cU 
Fh= nP" ~ Fp cos {2re ( h - p ) .  S} G(2rcRja). (5) 

p j = l  

The term 1/V on the right of (4) has now been re- 
placed by e/V, since we are dealing specifically with a 

1 .L projection. Substituting S=~ ,4  into (5), and writing 
h=h,k,O and p =p,q,O, we find 

Fh=2CU~nv Fpcos {~z2 ( h - p + k - q ) }  j=l ~ G(2rcRja) 6 

Two distinct cases may now arise: 
(1) (h + k) and (p + q) both even or both odd, leading to 

2cU ~ G(2rcRja) 
Hhr' = + - n V  

j = l  

(2) (h + k) even and (p + q) odd, or (h + k) odd and (p + q) 
even. In both cases, ( h - p + k - q )  is odd, and Hhp=0. 

Hence the reflexions fall into two parity groups, and 
only pairs of reflexions belonging to the same parity 
group are related by the non-crystallographic symmetry 
equations. 

The derivation above takes no account of the slight 
tilts and displacements of the discs mentioned in the 
Introduction, although these are unlikely to have much 
effect on the signs, especially at low resolution. A po- 
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Fig. 1. Molecular packing in TMV protein. 
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tentially more serious problem is the overlap which 
occurs if the molecules are assumed to be discs of 
radius 90 /~. A method of avoiding this difficulty is 
discussed in a subsequent section, although the results 
show that in practice the effect of overlap is not as im- 
portant as might have been supposed. 

The effect of truncation of the G function 

The function G(2rcRa)=Jt(2rcRa)/(rcRa) oscillates like 
an attenuated cosine wave, but never dies away to zero 
(Fig. 2), so that in theory the summation in equation (5) 
must be taken over the whole of reciprocal space. 
Clearly this is impractical, and it is necessary to trun- 
cate the summation over p at some stage by setting an 
upper limit to the allowed arguments of G. Tollin & 
Rossmann (1966) have shown that this truncation of the 
G table is equivalent to a series termination effect in 
real space. If we consider the electron density in the 
cell to be multiplied by a shape function g(x) (the 
Fourier transform of G), such that 

~o' (x) = Q(x)g(x) 

then ideally this function g must everywhere have the 
value 0 or 1 if ~ ' -Q .  Because of the series termination, 
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Fig. 2. The G function and its first derivative. ( ): disc, 
radius a; ( . . . . .  ): annulus, radii a and 0.22a; ( . . . . .  ): 3G/3a 
for annulus. 
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Fig. 3. Shape functions obtained by Fourier-Bessel inversion 
of the truncated G function. ( ): disc, (Ra)max=2"5; 
(-.-.-): disc, (Ra)=ax= 1"25; ( . . . . .  ): annulus, (Ra)ma,=2"5. 

however, the function g does not drop abruptly to zero 
at its boundary, but instead decreases more slowly, 
and may be significantly less than unity at radii less 
than a. For example, Fig. 3 shows some effective shape 
functions calculated by Fourier-Bessel inversion of the 
truncated G function 

[ IR lnag  

g(r)=2zc to G(2rcRr)Jo(2rcRr)RdR 

with maximum allowed arguments of Rr = 2"5 and 1.25. 
This series termination effect is worsened by the compu- 
tationally necessary practice of using only the largest 
terms of the matrix H. Since this tends to choose 
terms which are dominated by a few large G values, the 
effective truncation of G may be even sharper than ex- 
pected, with a consequently more serious effect on the 
shape function. The result of this is that the phases 
generated by the method, when combined with the ob- 
served amplitudes, tend to give low weight to the elec- 
tron density near the envelope boundary; indeed, this 
effect is clear in Crowther's (1969) Fourier map of 
triaminotrinitrobenzene. In the centrosymmetric case, 
at least, one solution to this problem is to overestimate 
the value of the molecular radius. This then leads to 
full-weight density out to the edge of the envelope, at the 
expense of some low-weight overlap between neigh- 
bouring envelopes. A reasonable assumption is that 
the optimum molecular radius (for given maximum G 
argument, number of terms etc.) is that which mini- 
mizes the root-mean-square lack of closure of the equa- 
tions (5), since we are seeking to fill as much of the cell 
with density as is consistent with no overlap between 
adjacent envelopes. Tests with a two-dimensional mod- 
el structure indicated that this is a valid procedure, and 
the method finally adopted was to perform a least- 
squares refinement of the envelope radius alternately 
with cycles of sign determination. 

Refinement of envelope parameters 

We want to adjust the disc radius, a, so as to minimize 
the squared lack of closure 

~. ez~ = ~ (Fo~s-IG.,cl) z 
h h 

where Fobs is the observed amplitude for reflexion h, 
and F e a l e  the value obtained by summing the right- 
hand side of (4). Assuming that e is a linear function of 
a, this leads to normal equations 

J c3[F~.icl ].2 da= ~ { 3lFca,~[ 

Now since 

we have 
P 

alG.,ol aHh~ 
a ~  - s ign  (Fu) ~ ~ G 

P 
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where, from (4) 

_ ~. O { U  G(2rcR:a)} OHhp 1 exp {2rci(h-p).  S} ~ a  V 
...... 3a n J=l 

Putting U= rca 2, G(x) = 2Jt(x)/x, and using the relation- 
ship 

d 
dx (S,(x)/x") = - S,+ l(x)/x", 

we find 

0_H_hp_ = _2U__ exp {2~i(h-p)  S} 
Oa naV 

x ~ {G(2rcRja)-Jz(2rcR~a)}. 
j = l  

Hence cSH/Oa is calculable, and from it Aa. In practice, 
the signs are determined a few at a time, working out 
from the origin of reciprocal space (Main, 1967), and 
application of this least-squares procedure after each 
block of signs has been determined rapidly leads to a 
stable value of a. 

Direct calculation of the allowed eigenvectors 

Although the phasing method described above depends 
on the eigenvalue properties of the matrix H, these 
eigenvalues and their eigenvectors are never explicitly 
calculated. If we knew the eigenvectors, then an alter- 
native approach to the problem would be possible, 
since the transform of the structure of interest can be 
expressed as a linear combination of those eigenvectors 
corresponding to unit eigenvalue. In Crowther's nota- 
tion 

F = Z pjuj 
j = l  

where the uj are the m allowed eigenvectors,/tj their 
(real) weighting factors, and F is the Fourier transform 
of the structure. F and u are in general complex, al- 
though in the problem to be discussed here they are 
real because of the centrosymmetry of the projection. 
Since only intensities (FF* or IF[ z) are known at the 
start of the investigation, Crowther suggested that the 
19 could be determined by solving the set of quadratic 
equations 

= _.. #jpkUj~Uih, h = O, 1 . . .  N ,  
j = l  k = l  

where N is the number of available X-ray observations. 
Owing to the difficulty of solving such a set of equa- 

tions, this method of determining the phases was not 
pursued. However, an alternative method of determin- 
ing the pj exists, which is mathematically equivalent to 
the iterative phase determination scheme finally adop- 
ted by Crowther (1969) and described above. Let us 
assume that we know the m allowed eigenvectors u. 
Then we can construct an N x m matrix, A, whose col- 
umns are these eigenvectors. Then since the u form an 

orthonormal set, and F =  ~ pjuj, we have 
j = l  

and 

From this we see that 

F=A~ 

# = A * F  . 

F = A A * F  (6) 

and AA* is an N x  N matrix, m of whose eigenvalues 
are unity while the remainder are identically zero. Thus 
as far as determining the phases is concerned, AA* is 
analogous to H, and we can solve (6) by a two-step 
iterative process: 

(1) multiply the current best estimate of F by A* to 
get p; 

(2) evaluate F = A p ,  and reset the IFl's to their ob- 
served values, repeating these steps until the process 
converges. 

It is easily shown that this is equivalent to least- 
squares fitting, when the current phases are used on 
the right-hand side of the normal equations. 

As in the iteration with the matrix H, there is no 
guarantee that this method (henceforth referred to as 
the eigenvector method) will produce the best p~ and 
therefore the correct phases; indeed it is easy to write 
down small A matrices which converge to an incorrect 
solution if no prior phase information is introduced. 
Nevertheless it is to be hoped that with a large enough 
redundancy (i.e. N: m ratio) the best solution will be ob- 
tained. 

The allowed eigenvectors for TMV protein 

Any two-dimensional function bounded by a disc may 
be expanded in functions of the form 

~U,,m(r,(o)=J,(k .... r) exp (in(o) (7) 

(i.e. a Fourier series in cylindrical polar coordinates). 
Here r and (o are real-space coordinates, J,, is the Bessel 
function of order n, and k ..... is chosen to make the 
ruth zero of J,, fall on the edge of the disc. The 9%, form 
a complete set of functions periodic in (o, so that any 
arbitrary density inside a disc may be expressed as 

oo oo 

~(r,(o)= )2 ~ /m,~'.m(r,(o)- 
n = - - ~  m = l  

If we consider a two-dimensional 'close-packed crystal' 
of such discs, with no restrictions on the density distri- 
bution inside the disc, then the number of eigenfunc- 
tions V .... required to describe the structure to a given 
resolution is approximately twice the number of avail- 
able X-ray observations. [More exactly, it is 2U/V, cor- 
responding to the gradient of the m, N plot as given by 
Crowther (1967).] In other words, the system is just 
determined, in the sense of having as many equations as 
unknowns, when the phases are known initially, that is, 
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there are two 'observations' per reflexion. If, however, 
the density inside the disc is known to possess j-fold 
rotational symmetry, then the only allowed eigenfunc- 
tions are those for which n is an integral multiple of j, 
thus reducing the number of unknowns by a factor ofj. 
We will now derive an expression for the structure fac- 
tors of TMV protein in terms of the Fourier transforms 
of these functions. 

The eigenvector U.m corresponding to the eigenfunc- 
tion ~U.m(r, ~o) can be found by Fourier-Bessel transfor- 
mation: 

7/7 ,a   )]t0 ' r'2 rdr 
(8) 

where R,q~ are cylindrical coordinates in reciprocal 
space, and a is the radius of the disc. Now since 

IJ.(~z)&(~z)zdz- z 
0~2 __ ~2 

x {~s.(~z)J._l(~z)-~J.(pz)J._l(~z)} 

[see, e.g. Morse (1948), p. 188], and J.(k,,ma)=O by defi- 
nition, we have 

Unm(.R, ~ )  

= -2nk .ma i"  J . (2nRa)J._l(k .ma) exp (inq~) . 
(k.~m- 4n2R ' ) 

Rather than use the exponential, in practice it is more 
convenient to combine corresponding terms with posi- 
tive and negative n, using 

S_.(x)-- ( -  1)"J.(x) 

giving even (cos n~b) and odd (sin n~) functions with 
n>0 .  

In the hkO projection of TMV protein the crystallo- 
graphic symmetry is such that we need only consider 
the even functions ,and since we have taken the mole- 

1 ! cular centres to be at _+ (7, 4), it is necessary to include 
an additional phase factor i h+k. Hence 

Unto(crystal ) (R, ~) 
-- 4nknmai" + h + t, 

= (k2m_4zc2R2) J ,(2nRa)J,_x(k,ma)Cos(n¢~).  (9) 

Again a separation into two parity groups is convenient, 
since U,m must be real, and therefore for (h +k)  even 
only terms with n even contribute, and for (h + k) odd 
only terms with n odd. More importantly, the above 
expression for the eigenvector applies even if neigh- 
bouring discs overlap, since it is simply a sum of trans- 
forms of individual discs, modified by appropriate 
phase factors. 

The term z ( k , = -  4nZR 2) in the denominator of (9) im- 
plies that the significant contribution to the diffraction 
pattern from each eigenfunction is limited to a fairly 
small range of Bragg angles centred around d * =  R =  
k,,m/2n. Thus n and m can be chosen appropriately at 

any given resolution. The criterion used for this work 
was that when the mmaxth zero is fitted to the outer edge 
of the disc, the spacing between the (mmax--1) and 
(mmax + 1)th zeros of J.  should be approximately equal 
to the resolution used. 

In addition, the eigenvectors U.m must be normali- 
zed, so that 

lu, m(h)lZ= 1 
h 

for all n,m.  This can be done analytically since the 
eigenfunctions are orthogonal and satisfy 

la l2'~Jn(knmr ) Cos (ncIg)Jn,(kn,m,r ) cos (n' qg)rdrdq b 
0 0 

= f ,,m~nn,~mm , 
where 

f 1 o f.m = COS 2 (nq~)d~ J2n(k.mr)rdr 
0 0 

1 2 2 = ~na J ._ l ( k .ma) .  

In practice this orthogonality condition was used to 
put all the eigenvectors on the same scale, and the 
numerical scale factor was found by evaluating 

[u01(h)] z over a sufficiently wide range of h. 
h 

Note that although J.(2nRa)/(k2m - 4nZR z) becomes 
indeterminate when R=k.m/2n ,  the quotient has no 
discontinuity, and so the limiting value 

Lt. J.(2nRa) _ - a  J . - l (k .ma)  
z n--+knmlZn knm -47~2R2 4nR 

may be used. 

A comparison of the two methods 

The eigenvector method has several practical advan- 
tages over computation with the matrix H: since the uj 
are computed analytically, there is no question of 
series-termination errors introduced by truncation of 
the G table. Thus electron-density maps generated by 
this method show no artificial drop in density level near 
the molecular boundaries. In addition, it is only neces- 
sary to store the matrix A, which is smaller than H by 
a factor of  2N/m.  The most serious disadvantage of the 
eigenvector method is that the expansion functions will 
vary from problem to problem: in three dimensions, 
for example, the algebra is quite different, whereas the 
H-matrix method is affected only insofar as the function 
G has a different form. 

Results from the H-matrix method 

The initial sign determination trials on TMV protein 
were carried out on only 200 reflexions from each par- 
ity group out of the 450 or so available at 6 .A. resolution. 
This was partly to save computer time, and partly 
since it was felt that the sign determination would be 
more reliable at low resolution. The reflexions used 
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were chosen simply on the basis of low Bragg angle, 
without using any other criteria such as the value of 
IF], so that the 200 reflexions correspond to a resolu- 
tion of 9.5 A. 

The sign determination was carried out for the two 
parity groups quite separately, to avoid having to store 
a large matrix half of whose elements would be identi- 
cally zero. The largest 150 coefficients of each equation 
were used, chosen on the basis of large values of 

[Fp 2 G(2nR.ia)l, and arguments of G greater than 
j = l  

2n x 2.5 were ignored. Later in the work it became 
clear that a considerably smaller maximum argument 
would suffice once the optimum envelope radius was 
known, although there is then a tendency for the least- 
squares method to behave irregularly, probably owing 
to the slow decrease of 3G/Oa with increasing argument 
(Fig. 3). 

An envelope radius of 90 A was initially used, and in 
accordance with the results obtained from model struc- 
tures, the electron-density map computed with the re- 
sulting signs showed a sharp drop in the mean density 
level beyond about 60 A from the molecular centre. In 
addition, there is a tendency in the (h +k)  even parity 
group for density to appear at the centre of the ring, 
where it is known that there can be no protein. This 
density was excluded from subsequent calculations by 
using as the molecular envelope an annulus with inner 
radius 20 A. All signs were made positive at the start of 
iteration, and reflexions added in blocks of 25, iterating 
at each stage until there were no further sign changes, 
this generally taking four or five cycles. At the end of 

the calculation, the residuals, defined by 

R =  Z IFob,-Fealel/Z Fob, 
h h 

were 0.439 for the (h + k) even parity group and 0.451 
for (h + k) odd. Subsequent work showed that the signs 
obtained were independent of the starting set, and also 
of the precise mode of iteration: the same result was 
obtained if the complete F vector was included from 
the start (Crowther, 1969). 

Since allowing larger arguments of G is computation- 
ally difficult, a further trial was carried out, still using 
only 150 terms from each equation, but refining the 
envelope radius by the least-squares method after each 

R 
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Fig. 4. Variation of R value with number of reflexions in- 
cluded in the phase equations. ( . . . . .  )" Envelope radius 90 ,~, ; 
( ): envelope radius 110/~.. 

(a) (b) 
Fig. 5. Comparison of 9.5 A resolution (h+k) even Fourier maps using signs obtained from (a) single isomorphous replacement, 

and (b) non-crystallographic symmetry. 
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block of 25 signs had iterated to completion. At the 
stage when 50 signs had been determined, the value of 
the radius increased to 110 A, and remained stable at 
this value for the remainder of the calculation. The 
residual at the end of refinement was 0.256. On re- 
peating the calculation for the reflexions with (h+k) 
odd, the same value of 110/~ was obtained, and the 
final residual was 0.334. A plot of residual against num- 
ber of reftexions included in the summation for a = 90 A 
and a = 110/k is shown in Fig. 4. 

Comparison with isomorphous-replacement results 

The signs obtained by Gilbert (1970) using the single 
isomorphous replacement method provide a valuable 
independent check of the results described above. On 
comparison, it was found that of the (h + k) even parity 
group, 182 of the 200 signs determined from the non- 
crystallographic symmetry agreed with those found 
from isomorphous replacement. Of the 18 disagreements, 
7 corrrespond to reflexions whose isomorphous figure 
of merit is less than 0.1, that is, reflexions whose signs 
are not reliably determined by this particular isomor- 
phous replacement. 

Fourier maps computed with the two sets of (h + k) 
even signs are shown in Fig. 5. It can be seen that the 
principal differences between the two maps are at the 
centre of each disc and between the discs. This is not 
very surprising: firstly, the omission of unmeasurable 
low-order terms from the Fourier summation is expec- 
ted to lead to some density in regions outside the discs, 
and secondly, no account has been taken of the solvent 
density outside the protein. The only effect of a uniform 

Fig. 6. 7 ,~ resolution Fourier map using 838 reflexions from 
both parity groups. 

solvent density outside tbe molecular envelope is to 
change the low-angle intensities. The effect of this on 
the phase equations has been discussed by Main (1967), 
but since it only affects interactions with the F(000) 
term (which was ignored in this work), no harm 
should result. The density fluctuations outside the pro- 
tein annuli in Fig. 5(a) are therefore probably real fea- 
tures caused by non-uniform solvent density and omis- 
sion of low-order reflexions from the summation. Omis- 
sion of the F(000) term also leads to an ambiguity in 
the overall sign of the electron density: all the signs 
could be wrong, but would still satisfy equation (1). 
The correct solution is the one which gives troughs but 
no high peaks outside the molecular envelopes. 

Comparison of the signs of reflexions belonging to the 
(h+k) odd parity group showed much less striking 
agreement: only 120 of the 200 signs agreed with those 
found from isomorphous replacement, and the agree- 
ments appeared to be randomly distributed in recip- 
rocal space. The reason for this soon became clear, 
however: the isomorphous derivative contains one mer- 
cury atom bound to each subunit, and the positions of 
binding, together with the relative azimuth of the two 
discs in the stack, result in the rings of mercury atoms 
having almost 34-fold symmetry in projection. Hence 
the heavy atoms alone form an almost face-centred 
arrangement in projection, and contribute little to the 
(h+k) odd reflexions, resulting in unreliable sign de- 
termination. 

Extension to higher resolution 

Using the same envelope radius of 110 A, the equations 
were set up for all reflexions out to 7A resolution 
(425 with h+k even and 413 with h+k odd), this time 
allowing arguments of G up to 2z~ x 2.25, and using the 
largest 200 coefficients of each equation. This corre- 
sponds to about 80 % of the total information content 
of the equations, measured on tbe basis of 

~[HhpllFp~used)[/ ~lHhpllFp(total)l. The equations were 
P P 

solved in the same way as before, giving residuals of 
0.290 for (h+k) even and 0.353 for (h+k) odd. Of the 
425 reflexions in the even parity group, 355 agree with 
the isomorphous-replacement signs; although the 
agreement is not as good as at lower resolution, the two 
maps are very similar, and the agreement could no 
doubt be improved by using more coefficients and al- 
lowing larger arguments of G. Fig. 6 shows the map 
obtained using all 838 signs from both parity groups. 

Results from the eigenvector method 

In the first calculation using the eigenvector method, 19 
functions (16 ./o'S and 3 J34's) were used to describe the 
structure to 9.5/~ resolution, using (h + k) even reflex- 
ions only. Table 1 shows the norms of these eigenvec- 
tors, evaluated over the set of observed reflexions. Con- 
vergence was complete in five cycles, giving a residual 
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of 0.48. Of the 200 signs determined, 172 agreed with. 
those obtained from isomorphous replacement. Omis- 
sion of the four lowest-order 30 functions, which contri- 
bute significantly only to the low-order reflexions and 
are not orthogonal over the limited range of reflexions 
considered, gave a residual of 0.35, and 169 agreements 
with isomorphous replacement. On extending this cal- 
culation to higher (7~) resolution, a residual of 0.42 
was obtained using 30 functions. Despite this rather 
high. value, the principal features of the Fourier map 
agree with those in Fig. 6. The higher residual is presu- 
mably due to the non-orthogonality of some of the 
higher order functions over a limited resolution range, 
leading to eigenvalues of AA.* less than unity. The cor- 
responding eigenvectors are subsequently weighted 
down by the iteration process. 

Table 1. Norms of  the eigenvectors (h + k even) 
used to describe the structure to 9"5/k resolution 

The squares of  these norms are the 'a l lowed'  eigenvectors of  
the matrix A~*.  All other  eigenvectors were less than 10 -a. 
m n = 0  m n = 0  m n = 0  m n = 3 4  

1 0"0006 7 0"7168 12 0"9839 1 0"9506 
2 0-0017 8 0"8099 13 0"9773 2 0.9518 
3 0"0052 9 0"9673 14 0"9444 3 0.9371 
4 0"0164 10 0"9780 15 0"9618 
5 0"1074 11 0"9822 16 0"9540 
6 0-7144 

Application of this phasing procedure to the reflex- 
ions with (h + k) odd is more interesting. An attempt to 
determine signs at 7~  resolution using 31 eigenfunc- 
tions (21 Jlv's and 10 Js~'s, Table 2) gave a residual of 
0.37, and the Fourier map shown in Fig. 7. When the 
signs (arranged in order of increasing Bragg angle) were 
compared with those found using the H-matrix method, 
it was found that the two scts matchcd almost pcrfcctly 
in bands, but at various points in reciprocal space there 
was a changeover from total agreement to total dis- 
agreement. A possible reason for this is as follows: for 
reflexions with (h+k)  odd and l=0 ,  the structure 
factor Fh is given by 

F~= 136 ~" ~fji"J,(2rcRr~) cos (n~0~) cos (n@) 
j n 

(Gilbert, 1970), where r~,~as are polar positional coor- 
dinates of atom j ;  R,¢ '  are polar coordinates of the 
reciprocal-lattice point h, k, and n = 17, 51 etc. Thus the 
continuous transform has a series of diametrical nodes 
where n@ = + ~z/2. Inside any sector between two nodes, 
the radial variation of the transform depends on the un- 
known r /s ,  but there will generally be some nodes and 
regions of small IFI. Now in order for the solution 
generated by the matrix H to have 17-fold symmetry, 
the calculated F's must change sign correctly at the 
diametrical nodes (i.e. on going round a ring at fixed 
R), but it is possible to introduce incorrect sign changes 

along a radial line in reciprocal space (i.e. a line of con- 
stant 4)  without destroying the 17-fold symmetry. 
Moreover, the agreement between Fob s and IFc,,c[ will 
still be good, except near the nodes of the transform. 
This is exactly the behaviour observed, and it is a con- 
sequence of the iteration method that the problem 
arises; we should really fit the small amplitudes as ac- 
curately as possible: although these make negligible con- 
tributions to the signs of the large amplitudes when 
substituted into the phase equations, they are impor- 
tant in that they eliminate a large number of solutions 
(Vainshtein & Kayushina, 1967). 

Table 2. Norms of  the eigenvectors (h + k odd) used 
to describe the structure to 7 ~ resolution 

m #l= 17 m n = 1 7  m n = 5 1  

1 0-9383 12 0-8654 1 0.6631 
2 09286 13 0 8354 2 0.9331 
3 0.8776 14 0.8583 3 0-8102 
4 0.8675 15 0.8606 4 0.8368 
5 0.9039 16 0.8468 5 0"8742 
6 0-9028 17 0.8526 6 0-2191 
7 0-8858 18 0.4215 7 0.4461 
8 0.9184 19 0-4684 8 0.2031 
9 0"8831 20 0-2578 9 0.2459 

10 0.8702 21 0.1798 10 0-1690 
11 0-8776 

Thus in the resolution range where only Jlv terms 
contribute to the diffraction pattern, the problem re- 
duces to the one-dimensional one of determining 
whereabouts on a radial line the sign changes occur. 
The only condition which the resulting calculated 
transform must obey is the rather weak one that its 

' ~ , ~ o - ~ 0 ~ ~  ~. ~ . . . . . . . . . . . .  4 ~ 

- % . . . . . . . . . .  

. . . .  
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!° @ , ~ ~ o 
~@: ~n ' ~" ! ~.k¢~.~ ° ~ i ~ " , ~-, 

, -, ) oLT=t~ ......... ~ o  .. ~ , ~ ,  . . ~  . 

Fig. 7. 7 ~ resolut ion Four ie r  map (h + k odd)  obta ined by f i t-  
t ing 31 eigenvectors to the intensities. Negatioe regions are 
represented by light contours .  
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transform must be bounded by the envelope containing 
the molecule (Bragg & Perutz, 1952). Since direct cal- 
culation of the eigenvectors imposes this boundary 
condition rather more rigorously than the H-matrix 
method, it is probable that the (h+k) odd sign set 
derived by this new method is the better of the two. 
Inspection of the two Fourier maps tends to support 
this proposal: the map obtained from the H-matrix 
iteration shows a ring of high density at a radius of 
60 A and little else; the map obtained by the eigen- 
vector method (Fig. 7) shows a more even distribution 
of density extending right out to 90 A. Further evidence 
that the signs are correct is found from comparison with 
the isomorphous replacement signs as a function of the 
isomorphous figure of merit m. All 14 signs with 
m > 0.6 agree with those found by direct calculation of 
the eigenvectors. As m decreases, so does the percentage 
agreement, until for m <0.2 it is effectively random. 
These results are presented in histogram form in Fig. 8, 
which shows the percentage agreement (a) between 
SIR signs and those obtained by the eigenvector 
method, and (b) between SIR signs and those found by 
H-matrix iteration. The figure in each box of the histo- 
gram gives the number of sign agreements in that range 
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Fig. 8. Comparison of signs (h+k odd) obtained from non- 
crystallographic symmetry and single isomorphous replace- 
ment. (a) Eigenvector fitting; (b) H matrix. 

of m. (The apparent discrepancies in the figures for 
m<0.3  arise because the eigenvector calculation was 
extended to a marginally higher resolution than the 
H-matrix calculation.) 

That block-switching effects do not occur in the 
(h + k) even case may be attributed to the fact that the 
transform contains strong cylindrically symmetric con- 
tributions from the J0 terms, on which the Ja4 terms act 
as a perturbation. The J0 contribution effectively means 
that there is no sign ambiguity at low resolution, so that 
the first few signs determined by the H-matrix method 
are invariably correct, and correct sign indications are 
propagated through reciprocal space. In the (h + k) odd 
case, J17 terms start contributing only at a resolution 
of about 35 A. There is then a possibility of some in- 
correct signs being determined at the start of the itera- 
tion and this incorrect starting set will generate wrong 
signs at higher resolution. 

Confirmation that the signs obtained using the eigen- 
vector method are essentially correct has been provided 
by Drs J. N. Champness and T. C. C. Tao of this labor- 
atory, who have used them to compute difference- 
Fourier maps of new heavy-atom derivatives of TMV 
protein. These maps all show rings of 17 heavy atom 
peaks, but have fewer spurious peaks than the corre- 
sponding maps computed with the currently available 
SIR signs. 

Conclusions 

The results described here clearly show that the use of 
non-crystallographic symmetry for phase determina- 
tion can give meaningful results for a real protein 
structure with high symmetry. There seems to be no 
reason why this method should not be extended into 
three dimensions: the fact that the phases can take only 
two possible values in projection has no doubt helped 
in the present work, but the results quoted by Main 
(1967) and Crowther (1969) leave little doubt that the 
high degree of non-crystallographic symmetry in TMV 
protein is sufficient to obtain good three-dimensional 
phases ab initio. A high-resolution structural study of 
this protein raises many technical problems on account 
of the large unit cell. Nevertheless, the system is ideal 
for attempting a direct solution of the phase problem. 
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A Lattice-Dynamical Interpretation of Molecular Rigid-Body Vibration Tensors 
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The rigid-body motions of molecules in crystals are treated with the aid of lattice dynamics of molecular 
crystals. An equation is derived in which the rigid-body vibration tensors TLS are related to the 
dynamical matrices of the crystal. Then the components of TLS are explicitly given in lattice-dynamical 
terms. A procedure is developed with which the trace of S, which cannot be determined from diffrac- 
tion data, can be approximately determined. The principal motions of the rigid-body vibrations of 
molecules are discussed. Which types of coordinate systems can be used to give a physically meaning- 
ful description of the rigid-body motions is examined from a dynamical point of view. A 'dynamical' 
interpretation of the tensors TLS is given which consists in relating TLS to the intermolecular forces 
of the crystal and then comparing the intermolecular forces with the packing of the molecules in the 
crystal. The interpretation is illustrated with the structures of maleic anhydride and 5-chloro-l,4- 
naphthoquinone. 

1. Introduction 

Cruickshank (1956a) was the first to show how the 
external vibrations of  almost rigid molecules can be 
described by two tensors T and L which account for 
the translations and librations of the molecules respec- 
tively. However, Schomaker  & Trueblood (1968) 
showed that, in general, the rigid-body motions are 
fully accounted for only if  a ( translat ion-l ibrat ion) 
correlation tensor S with 9 components  is introduced. 
Only 8 of  these components  can be determined from 
diffraction data. Schomaker & Trueblood's  derivation 
was performed in geometrical and statistical terms, cf. 

* Present address: Fritz-Haber-Institut der Max-Planck- 
Gesellschaft, D-1000 Berlin 33, Faradayweg 4-6, Germany. 

also Johnson (1970). In connexion with their deriva- 
tion Schomaker & Trueblood discuss (geometrical) 
possibilities for the actual rigid-body motions. In the 
main these authors consider a model in which the 
molecule carries out six uncorrelated simple mot ions;  
three of them are screw motions about perpendicular  
non-intersecting axes, and three are pure translations. 
Although no claim is expressed ' . . .  that the ele- 
mentary motions so derived must have dynamic signi- 
ficance' (Johnson, 1970) the rigid-body motions de- 
scribed by the non-intersecting-axes model are related 
to the geometrical (and chemical) arrangement  of  the 
molecules in a given structure; cf. also the discussion of  
the rigid-body motions of the glycolic acid molecule as 
given by Ellison, Johnson & Levy (1971). This means  
that the screw motions about non-intersecting axes are 


